We aim to achieve continuous improvement in our products. Therefore, specifications are subject to change without prior notice.

Due to changes the product can deviate from the information specified in this document. Therefore Stokvis rejects any responsibility for the differences between the product delivered and the information mentioned in this document.
R300 TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>R301</th>
<th>R302</th>
<th>R303</th>
<th>R304</th>
<th>R305</th>
<th>R306</th>
<th>R307</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal heat output kW</td>
<td>70</td>
<td>86</td>
<td>114</td>
<td>139</td>
<td>185</td>
<td>230</td>
<td>274</td>
</tr>
<tr>
<td>Nominal heat input (nett. CV) kW</td>
<td>74</td>
<td>91</td>
<td>121</td>
<td>147</td>
<td>194</td>
<td>243</td>
<td>289</td>
</tr>
<tr>
<td>Minimum heat output kW</td>
<td>16</td>
<td>20</td>
<td>27</td>
<td>33</td>
<td>44</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

Gas consumption
- **natural gas H** (10.9 kWh/m³) m³/h: 6.79, 8.35, 11.10, 13.49, 17.80, 22.29, 26.51
- **propane** (12.8 kWh/kg) kg/h: 5.78, 7.11, 9.45, 11.48, 15.16, 18.98, 22.58

Gas inlet pressure
- **natural gas** (min.) mbar: 17, 17, 17, 17, 17, 17, 17
- **natural gas** (max.) mbar: 25, 25, 25, 25, 25, 25, 25
- **propane** mbar: 50, 50, 50, 50, 50, 50, 50

Water capacity dm³: 13, 15, 17, 19, 36, 39, 42
Max. working pressure bar: 6, 6, 6, 6, 6, 6, 6

Flue connection D mm: 100, 100, 100, 150, 180, 200, 200
Air supply (option) D1 mm: 100, 100, 100, 125, 150, 180, 180

Gas connection G Rp¾" Rp¾" Rp¾" Rp¾" R1" R1½" R1½"
Water connections W R1½" R1½" R1½" R1½" R2" R2" R2"
Safety valve (option) ¼" ¼" ¼" ¼" ¼" 1" 1"
relief connection ¼" ¼" ¼" ¼" ¼" 1¼" 1¼"
standard setting bar 3 3 3 3 3 3 3

Power supply V: 230 1N~ 230 1N~ 230 1N~ 230 1N~ 230 1N~ 230 1N~ 230 1N~
Frequency Hz: 50 50 50 50 50 50 50
Fuse A: 10 10 10 10 10 10 10

Max. electrical power consumption
- **unit** W: 135 135 370 370 370 370 370
- pump (option) maximum W: 245 245 245 245 380 380 380
- **total** W: 380 380 615 615 750 750 750

Boiler weight, empty, ± 5 % kg: 120 140 160 180 250 270 290

Table 1 Technical data R300
Fig. 1 Dimensional sketch R500
<table>
<thead>
<tr>
<th>Type</th>
<th>R301</th>
<th>R302</th>
<th>R303</th>
<th>R304</th>
<th>R305</th>
<th>R306</th>
<th>R307</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>600</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>B1</td>
<td>110</td>
<td>160</td>
<td>210</td>
<td>240</td>
<td>130</td>
<td>154</td>
<td>180</td>
</tr>
<tr>
<td>D</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>180</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>D1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>G</td>
<td>Rp¾"</td>
<td>Rp¾"</td>
<td>Rp¾"</td>
<td>Rp¾"</td>
<td>R1"</td>
<td>R1½"</td>
<td>R1½"</td>
</tr>
<tr>
<td>H1</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>176</td>
<td>197</td>
<td>197</td>
<td>197</td>
</tr>
<tr>
<td>H2</td>
<td>238</td>
<td>250</td>
<td>325</td>
<td>347</td>
<td>320</td>
<td>330</td>
<td>365</td>
</tr>
<tr>
<td>H3</td>
<td>943</td>
<td>943</td>
<td>874</td>
<td>874</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>L</td>
<td>635</td>
<td>635</td>
<td>635</td>
<td>635</td>
<td>890</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>L1</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>155</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>L2</td>
<td>445</td>
<td>445</td>
<td>445</td>
<td>445</td>
<td>655</td>
<td>655</td>
<td>655</td>
</tr>
<tr>
<td>L3</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>735</td>
<td>735</td>
<td>735</td>
</tr>
<tr>
<td>W</td>
<td>R1½"</td>
<td>R1½"</td>
<td>R1½"</td>
<td>R1½"</td>
<td>R2"</td>
<td>R2"</td>
<td>R2"</td>
</tr>
</tbody>
</table>

Table 2 Dimensions R300

Conditions applicable to table 1:
- Nominal capacity measured at : 60 - 80 °C.
- Gas consumption at : 1013 mbar, 15 °C, dry
- Gas category : II_{2H3P}
- Gas pressure : The unit is adjusted during manufacture for a gas supply pressure of 25 mbar.
- Appliance category : B23, C53, C33 or C63
- Protection degree : IP20
SUPPLEMENT

At the time of printing the following regulations and standards were taken into account:

British Standard

1. **BS 5440** - parts 1 + 2 (flueing and ventilation).

2. **BS 6644** - Installation of gas fired water heaters (60 kW - 2 MW).

3. **BS 6700** - Specification for design, installation, testing and maintenance of services supplying water for domestic use within buildings and their curtilages.

4. **BS 6891** - Installation of low pressure gas pipework.

The following British Gas publications may be helpful:

IM/2 - Purging procedures of non domestic gas installations

IM/5 - Soundness testing procedures for industrial and commercial gas installations.

IM/11 - Flues for commercial and industrial gas installations.

IM/16 - Guidance notes on the installation of gas pipework boosters and compressors.

IM/22 - Installation guide for high efficiency condensing boilers.

Any other requirements currently in force.

The following regulations should also be taken into consideration:

Gas Safety (Installation and Use) Regulations.

Building Regulations.

Local fire regulations

Regulations from the local gas distribution agency.

New Water Regs - The water supply (water fittings) Regulation 1999.
TABLE OF CONTENTS

R300 Technical data .. III
Dimensions R300 ... IV
Table of contents .. VII

1 INTRODUCTION ... 1
1.1 Stokvis .. 1
1.2 Supplier ... 1
1.3 This document 1
1.4 Service ... 2
1.5 General restrictions 2

2 DESCRIPTION ... 3
2.1 General ... 3
2.2 Main components 5
2.2.1 Description of principal components 6
2.3 Boiler control 8
2.4 Safety aspects 8

3 SAFETY .. 9

4 DELIVERY AND TRANSPORT 12
4.1 Delivery ... 12
4.2 Packaging .. 12
4.3 Transport .. 12

5 INSTALLATION .. 13
5.1 Regulations ... 13
5.2 Boiler room ... 13
5.2.1 General .. 13
5.2.2 Set up .. 13
5.2.3 Ventilation 14
5.3 Connections .. 14
5.3.1 Gas connection 14
5.3.2 Electrical connection 14
5.3.3 Water connections 19
5.3.4 Combustion air supply 20
5.3.4.1 General 20
5.3.4.2 Air supply pipe 20
5.3.5 The flue system 22
5.3.5.1 General 22
5.3.5.2 Chimney 22
5.3.6 Condensate discharge 24
1 INTRODUCTION

1.1 Stokvis. Since its beginning in 1985, Stokvis has built up a strong reputation in industry for the development, production and marketing of gas-fired, high efficiency boilers and ISO9002 water heaters in the 60 to 1200 kW range.

Through their unique construction, these central heating units and water heaters are renowned for their:
- high thermal efficiency
- environmental friendliness
- light weight and small dimensions
- durability
- low noise production
- large regulating range
- available with many different options.

Continual research and development means that Stokvis remains at the forefront of boiler technology.

1.2 Supplier STOKVIS ENERGY SYSTEMS
96R Walton Road, East Molesey
Surrey KT8 0DL
Tel.: 08707 707 747
Fax: 08707 707 767

1.3 This document This documentation has been produced to aid the following target groups:
- the consulting engineer
- the heating installer
- the service engineer
- the user.

Because these target groups require mostly similar information and also specific information, our technical documentation has been integrated to provide these target groups with the necessary general and specific information to install, service and operate this product.
The supplier (see 1.2) will be able to provide any further or supplemental information.
The following aspects of the units are dealt with:
- General description
- Technical specifications
- The facilities necessary for design and installation
- Installation examples
- Maintenance instructions.

The operating instructions needed by the user are attached to the unit; these are also to be found in Section 6.

1.4 Service

The Stokvis service department is always available for commissioning and for providing service and maintenance. For details see 1.2.

1.5 General restrictions

The application, installation and maintenance of Stokvis products must always be carried out in accordance with the requirements (legal or otherwise), specifications and standards applicable to such installations.

All data, information and suggestions provided by Stokvis in relation to its products are based on careful investigation. Nevertheless, neither Stokvis nor any other organisation connected with Stokvis accepts any liability for application, installation that occurs outside its sphere of influence.

Changes may be incorporated without prior notice. Stokvis accepts no obligation to adapt previously delivered products to incorporate such changes.
DESCRIPTION

2.1 General

The Econoflame R300 series are environmentally friendly modulating gas fired heating boilers with variable outputs from 25 % to 100 % of maximum capacity. The R300 series consists of 7 types in a range from 70 to 274 kW.

The units have an extremely low emission of NOx and CO, so that this boiler satisfies the most stringent European requirements.

The R300 series have CE approval for all relevant European countries. The series are registered under the product identification number 0063BL3345.

The boilers can be supplied either as a standard (category B23) or a room sealed (categories C53, C33 or C63) appliances.

Working principle and construction

Air is blown into the appliance, as required, by a speed-controlled fan and is thoroughly mixed with gas in the correct proportions.

A temperature controller compares the desired water temperature with the temperature of the water flow. If required, the controller will vary the speed of the fan and the fan will give a speed feedback signal to maintain the correct heating capacity.

The gas/air mixture so formed is passed through the cooled premix burner and is ignited. The premix burner is constructed of finned bimetallic pipes (inside stainless steel, outside aluminium) and steel water headers.

Heat transfer takes place in three heat exchangers. The first heat exchanger is constructed from smooth stainless steel pipes, while the second heat exchanger is fitted with laser-welded, stainless steel finned pipes. The third heat exchanger is fitted with smooth stainless steel pipes.

All heat exchangers are fitted with steel profiled water headers (stainless steel for water heater) which guarantee an optimum water flow through the appliance.

The burner and the heat exchangers are connected in series.

The R300 units have a small water capacity so that it can rapidly adjust to changing conditions. It can be installed without any restrictions to the return water temperature. The necessary water flow rate must be ensured by the boiler pump (optional).
Application possibilities
Because of its construction, the R300 unit is suitable for use in heating systems:
- With a constant supply temperature
- With a weather dependent heating demand
- With low temperature condenser systems
- With optimised condensation
- With control by means of building optimiser/compensator system (0 – 10 Vdc = +2 °C – +90 °C), see 5.3.2 connection terminals).

Fig. 2 The Econcoflame R300 standing model
2.2 Main components

1 Casing
2 Air pressure switch
3 Control panel
4 Burner
5 Combustion chamber
6 First heat exchanger
7 Second heat exchanger
8 Third heat exchanger
9 Condensate receptacle
10 Flue attenuator
11 Condensate discharge trap (U-bend)
12 Flue gas discharge
13 Flow connection A Air
14 Safety valve (option) B Gas
15 Gas connection C Flue gas
16 Adjusting feet D Condensate
17 Frame
18 Filling/drainage valve
19 Return connection
20 Water flow switch
21 Water headers
22 Ignition transformer
23 Connecting terminals
24 Distribution plate
25 Mixing chamber (internal)
26 Gas valve unit
27 Fan

Fig. 3 General survey
2.2.1 Description of principal components

The boiler is constructed from the following principal components:

Fan [27]
The DC fan, which is equipped with speed feedback, draws in the combustion air and increases the air pressure. The speed feedback signal is relayed to the regulator, which adjusts the speed if need be.

Gas train
The principal component of the gas train is the main gas valve [26]. The quantity of gas is adjusted in proportion to the quantity of air being supplied. The quantity of air depends on the speed of the fan. As an option, the unit can be equipped with a gas filter.

Mixing chamber [30]
This area is used for the thorough mixing of the gas and the combustion air. The chamber is situated inside the unit.

Burner [4]
After the gas/air mixture has been distributed over the burner using a distribution plate, the mixture is burnt on the burner surface such that the flame is directed downward. The burner is both air and water-cooled. The water headers are constructed of steel (stainless steel for water heater), and ensure a two-pass flow through the burner.

Heat exchangers [6, 7 and 8]
The first heat exchanger is constructed of smooth stainless steel pipes and transfers most of the combustion energy to the system water. The second heat exchanger is constructed of laser-welded, stainless steel finned pipes. The third heat exchanger is constructed of smooth stainless steel pipes. The second and third heat exchanger transfer the heat from the combustion gasses to the system water. All water headers are constructed of steel (stainless steel for water heaters), and ensure a five-pass or three-pass flow through the heat exchangers (depending on the type). The space between the burner and the first heat exchanger constitutes the combustion chamber.

Water headers [21]
The water headers are part of the burner and the heat exchangers.
Water connections
These consist of a flow connection [13] and a return connection [19]. Both of these connections are provided with a filling/drain valve [18]. The connection for the optional safety valve [14] is fitted on the supply line. The flow switch [20] is fitted on the return line.

Boiler pump (optional)
The boiler pump must be mounted on the return connection to the unit and can be directly connected electrically to the appropriate terminals in the connection box. The capacity and the working head of the pump is sufficient to overcome both the resistance of the boiler and some system resistance. As an option, the pump is supplied as a separate item with the boiler.

Condensate receptacle [9]
A condensate receptacle is fitted underneath the last heat exchanger. This receptacle is equipped with a condensate and flue gas outlet.

Frame [17]
The frame is constructed from steel profile sections and is fitted with vibration absorbing adjusting feet [16].

Casing [1]
The casing consists of easy-to-remove panels. Once the cover has been opened (using tools), all other panels can be removed without using tools.

The electrical section
This includes the control and safety circuits for the unit.

Connecting terminals [23]
The boiler power supply, the connecting terminals, the pump connection and the pump relay are all fitted on top of the boiler. The terminal strip is located under the cover, on the right hand side.
2.3 **Boiler control**

The principle employed for the Boiler Management Unit is as follows: The boiler begins operating on receipt of a heating demand. This heating demand is generated either:

A If the measured supply temperature is lower than the desired temperature

B As a result of “service operation” mode having been selected (mostat)

C in standby mode, when the water temperature falls below the frost protection temperature.

After the unit has started up, the PID controller sends a signal to the fan, thus controlling the fan speed. Depending on the quantity of air displaced by the fan, the proportional pressure regulator will add the corresponding quantity of gas. In this way, the boiler power is continuously modulated, enabling the boiler to accurately follow the demand for heat. The fan is equipped with a speed feedback, enabling an even more accurate control behaviour.

Once the supply water temperature exceeds the desired value, the unit will shut down. As soon as the supply water temperature falls below the set value, the boiler re-starts.

2.4 **Safety aspects**

The boiler contains the following safety components:

- Flame protection (1x re-start)
- Water flow protection
- Maximum water temperature protection
- Gas valve test
- Overload and underload protection.

If one of these components operates, this results in a lockout fault. Lockout faults can only be cancelled by resetting the unit.
SAFETY

Installation instructions
Read through these instructions carefully before starting the installation.

The appliance must be installed by a recognised installer in accordance with the applicable national and local regulations (see Supplement).

The installation may only be used for heating systems up to a maximum water temperature of 90 °C.

It is expressly stated that these installation instructions must be seen as a supplement to the above mentioned standards and regulations and that these standards and regulations must take precedence over any information included in this technical manual.

Pictograms used in this manual

⚠️ An instruction that is essential for the correct functioning of the installation.

⚠️ If these operations, procedures, etc., are not accurately followed this can result in serious damage to the installation, personal injury or environmental damage.

⚠️ Danger of electric shock.

📖 Useful information.
Maintenance
Work on the electrical installation may only be carried out by an authorised installer in accordance with the applicable electrical regulations.

Work on the gas and hydraulic installations may only be undertaken by properly trained personnel in accordance with the safety regulations for gas installations (see supplement).

Keep unauthorised persons away from the installation. Do not place any objects on the unit. Remain out of the area of the hot water connection and the chimney to avoid burns.

Before starting any maintenance or service activities, disconnect the electrical power supply and close the gas supply valve.

After completing any maintenance or service activity, check the whole installation.

As a supplement to the information provided in this technical manual, all applicable safety regulations must be consulted to avoid accidents.

Safety provisions
The installation may never be switched on if any of the panels have been removed or if any of the safety devices have been disabled.

Instruction and warning stickers
None of the instruction and warning stickers attached to the installation may be removed or covered and during the whole of the lifetime of the installation they must remain legible.

Replace any damaged or unreadable instruction and warning stickers immediately.

Modification
Modifications to the installation may only be carried out with the written approval of the manufacturer.
Danger of explosion
When activities are being undertaken in the boiler room, always follow the applicable instructions “Working in an area where there is a danger of explosion”.

Installation
The appliance must be installed by an authorised installer in accordance with the applicable national and local specifications and regulations.

Carefully follow all the safety instructions.

Operation
In the event of a gas leak, switch off the unit and close the gas supply valve. Open doors and windows and warn the appropriate authorities.

When the installation is re-commissioned, always follow the instructions for use.

Technical specifications
The specifications listed in this technical manual cannot be ignored.
DElivery and transport

4.1 Delivery
The unit comes as standard fully assembled, tested and packaged.

After delivery and removal of the protective covering, check the appliance for damage.

Check that the equipment delivered is in accordance with the order and the delivery note.

On delivery, check the data plate for the correct boiler type and gas supply pressure.

4.2 Packaging
The unit is supplied in cardboard packaging on a pallet.

For transport, consult the technical details for dimensions and weight.

4.3 Transport
Remove the packaging preferably after transportation and positioning in the boiler room or remove the panels before transporting the appliance. This is to prevent damage to the casing panels.

Moving the appliance
A pallet truck or fork lift truck used at the front or side of the unit.

Standard door width
The dimensions of the unit are such that after removing the pallet, all types will fit through a standard width door opening of 80 cm (remove the outside panels of type R307).

Positioning
Once the boiler has been installed, it can be adjusted horizontally using the adjusting feet. Subsequently, the water, gas, condensate and electrical connections can be made.

Protection against frost
If the unit is out of use during the winter months there is a danger of freezing. Drain the water from the installation using the filling/drainage valves.
5

INSTALLATION

5.1 Regulations
The appliance must be installed by a recognised installer in accordance with the applicable national and local specifications and regulations (see Supplement).

Commissioning should be carried out by the service department of your supplier.

5.2 Boiler room

5.2.1 General
- The construction of the unit ensures that losses through radiation can be neglected
- Because of the low noise level, additional sound insulation of the boiler room is unnecessary
- Because of the position of the electrical components, a plinth is not required
- The unit is so constructed that the space required for it is small
- The range of applications for the boiler is that much greater because of the possibility to supply it as a room sealed appliance (see Section 5.3.4)
- Boiler types 1 - 3 can also be suspended on a wall using the optional suspension bracket.

5.2.2 Set up
In order to avoid any difficulties, the following rules apply to the boiler room:

a Install the appliance in a frost-proof room
b Pay particular attention to the positioning of the appliance to ensure protection from freezing and/or high temperatures
c Ensure that the boiler room is sufficiently large, so that there is sufficient space on all sides of the unit to permit maintenance and possible replacement of components to be carried out.

The recommended minimum free space is:
- 250 mm at both sides
- 1000 mm at the front (space for free movement).

If you do not observe the recommended space requirements, future maintenance might be more difficult.

Installation on a roof
When the appliance is installed on a roof or when the boiler room is the highest point in the system, the following protective measures are important:
The unit itself may NEVER be the highest point of the installation; in other words, the flow and return pipes from the boiler (as seen from the boiler) must first run upward before running down to the boiler. Despite the fact that every unit is provided with water flow protection, local authorities often require low water level protection to be fitted. When multiple units are installed, it is only necessary to fit one additional protective device.

5.2.3 Ventilation

The ventilation of the boiler room must satisfy the applicable national and local standards and regulations (see Supplement).

With regard to ventilation, pay particular attention to the following points:

a) Observe the applicable national and local standards and regulations for the dimensions of the openings and the protection for any mechanical ventilation
b) Ensure that the air inlet openings are transversely placed in two opposite walls
c) Fit inlet grills with a large width and a small height
d) Ensure that the correct amount of high level ventilation exists
e) If the air supply is inadequate, it may be necessary to fit a mechanical means of providing adequate ventilation.

5.3 Connections

5.3.1 Gas connection

The gas connection must be made by a recognised installer in accordance with the applicable national and local standards and regulations (see Supplement).

The gas connection is made at the rear of the boiler.

The pressure of the gas supplied to the unit must be reduced to 25 mbar for natural gas or 50 mbar for propane with the use of a gas pressure regulator.

The loss of pressure in the connecting pipes must be such that, at maximum boiler capacity, the pressure must never fall below 17 mbar for natural gas or 30 mbar for propane.

5.3.2 Electrical connection

The electrical connections and provisions must comply with the applicable national and local standards and regulations (see Supplement).

The units are wired in accordance with the electrical diagram supplied with the appliance.
The electrical connections, the connection terminals and the boiler pump relay are located underneath the cover, on the right-hand side of the boiler. You can unlock the cover using a 4 mm socket wrench.

You must connect the unit using an all-pole main switch with a contact opening of at least 3 mm.

The cables to be connected (power supply, control) enter the appliance via the rear of the unit, using cable glands.

The appliance can be switched on and off with the switch on the control panel. The power supply voltage cannot be removed from the boiler pump relay in this way.

The installer must fit a mains isolator switch in the power supply to the unit **within the boiler room**. This can be used to switch off the power to the unit for maintenance purposes or in the event of a problem.

In accordance with the applicable standards and regulations, an **emergency shut-off** must be fitted **outside the boiler room**. In the event of a calamity, the power supply to the unit can be switched off.
In order to prevent malfunctions occurring as a result of inductive or high frequency signals, or static electricity, screened cables must be employed for all low voltage and control signals between the boiler and externally connected units. The screening must be earthed at both ends of the cable.

Electro-technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>Fan, control and safety components</th>
<th>Pump (option)</th>
<th>Total electrical power consumption (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supply* 1N~</td>
<td>Power consumption (max)</td>
<td>Supply* 1N~</td>
</tr>
<tr>
<td>V</td>
<td>W</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>R301</td>
<td>230</td>
<td>135</td>
<td>230</td>
</tr>
<tr>
<td>R302</td>
<td>230</td>
<td>135</td>
<td>230</td>
</tr>
<tr>
<td>R303</td>
<td>230</td>
<td>370</td>
<td>230</td>
</tr>
<tr>
<td>R304</td>
<td>230</td>
<td>370</td>
<td>230</td>
</tr>
<tr>
<td>R305***</td>
<td>230</td>
<td>370</td>
<td>230</td>
</tr>
<tr>
<td>R306***</td>
<td>230</td>
<td>370</td>
<td>230</td>
</tr>
<tr>
<td>R307***</td>
<td>230</td>
<td>370</td>
<td>230</td>
</tr>
</tbody>
</table>

Table 3 Electro-technical data

* tolerance on voltage: 230 V ±10 % /-15 %
 tolerance on frequency: 50 Hz ± 5 %

** the stated pump power is based on the maximum power consumption in pump speed 3

*** 3-phase pump available as an option.
Control and options
The appliances are fitted with a proportional regulation system. This can be made temperature dependent with the aid of a 0 – 10 VDC (= +2 °C – +90 °C) signal. In addition, the boiler regulating system can be extended by fitting one of the three options described below:

BME option
This is a weather-compensated regulator with the following possibilities:
- Three on/off periods per day with three different temperatures
- Night-time temperature reduction
- Domestic hot water priority with time programming
- Anti-legionella provision
- Optimum start
- Room-temperature sensor (can be switched off)
- Two-wire communication bus connection
- Multi-language display
- External control.

E6 option
This is a regulator with which two secondary groups can be weather-dependently controlled. In addition, domestic hot water temperature can also be regulated. All the settings can be adjusted independently for each group. This E6 regulator can be further extended with an optimizing controller for each group (BM). The boiler is then directly weather-dependently controlled.

KKM option
This is a boiler cascade manager permitting up to eight boilers to be switched in cascade. The KKM also has the same possibilities as the E6 option.

Connection terminals
The operation of the appliance can be influenced by externally generated signals applied to the appropriate terminals.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1-N-E</td>
<td>Boiler power supply; must be fused at 10 A.</td>
</tr>
<tr>
<td>8 - 9</td>
<td>Domestic hot water primary pump control. This output provides a voltage (230 V) when the boiler is operational as a result of a domestic hot water heating demand.</td>
</tr>
<tr>
<td>10 - 11</td>
<td>Boiler enable (230 V). When these terminals are connected the primary pump will be started and the boiler will be enabled. When there is an open circuit between them the boiler will be shut down. The pump will also stop after the set run on time. These terminals can be used, among other things, for setting the boilers to standby during the summer</td>
</tr>
</tbody>
</table>
months whilst continuing to provide domestic hot water priority.

12 Operation signal. If a fault has occurred 3 times or more within 6 minutes, the fault code will appear in the display with a "3" and the operation signal falls off (230 V, 50 Hz, 1 A).

14 - 15 Control voltage for an external gas valve. This output begins to provide 230 V before the boiler starts up; the voltage ceases after the boiler shuts down. This output can be used to open hydraulic valves or to operate boiler room ventilation.

16 - 17 Calorifier thermostat (230 V). When these terminals are interconnected the boiler will try to provide the set flow temperature programmed for the boiler. This input only functions if terminals 34 - 35 are interconnected.

18 - 19 Interlock input (230 V). If the connection between these terminals is interrupted, the boiler will be deactivated and wait until the connection is restored (after 6 minutes or if the same fault has occurred three times within 6 minutes, this input will lock out).

20 - 21 Lockout input (230 V). If the connection between these terminals is broken the boiler will enter the fault mode. Reinstall the connection and press the reset push-button.

30 - 31 External sensor*. After a suitable sensor has been connected it will be automatically recognised when the power supply is switched on.

32 - 33 Low velocity header sensor*. This sensor can measure the temperature of a low velocity header.

35 - 36 Calorifier temperature sensor*. After a suitable sensor has been connected it will be automatically recognised when the power supply voltage is switched on. The terminals 34 - 35 must not be interconnected. The purpose of this function, in comparison with the calorifier thermostat, is to make possible a night time temperature reduction and an anti-legionella switching (only with BME, E6 or KKM).

37 - 38 External influence input (2 – 10 VDC = +10 °C – +90 °C)*. At voltages below 2 V the boiler will switch to “constant supply temperature operation”.

39 - 40 External capacity output*. Only if programmed for fan speed control. This signal provides information for a capacity display. 0 – 100 % = 0 – 10 VDC. The maximum current is 0.5 mA.

41 - 42 SCOM bus connection (make sure to use the correct polarity).

43 - 44 Primary boiler pump control (0 – 10 V).

* In order to avoid faults caused by inductive currents, static electricity or high frequency signals, the use of screened cables is necessary.
5.3.3 Water connections

The appliance must be installed by a recognised installer in accordance with the applicable national and local specifications and regulations (see Supplement). The flow and return connections are made at the rear of the unit.

Water connection supports

We recommend that the supply and return pipes be properly supported using brackets to prevent mechanically overloading the lines and to simplify maintenance.

The unit is a constant water flow appliance and is suitable for use in both open vented (non-pressurised) systems and sealed (pressurised) systems provided the minimum pressure requirements, as per table 10, are met. The unit is optionally fitted with a boiler pump which guarantees the required water circulation through the boiler. The capacity and working head of the pump is sufficient to overcome both the resistance of the boiler and some resistance offered by the system.

⚠️ The boiler pump is however not a system pump

If the resistance of the system exceeds the available working head, the boiler will be shut down by the flow switch. In order to prevent this happening, the length and diameter of the primary pipework between the boiler and the low velocity header must be chosen such that the remaining working head of the pump (see table 8) will not be exceeded. It is recommended that manually operated valves be fitted between the water connections and the installation.

Connect the boiler pump on the return side, making sure to keep a distance to the flow switch of at least 5 x d.

The boiler pump (optional) can be installed horizontally or vertically.

⚠️ In order to limit the losses occurring in a non-operational boiler, a motorised valve is sometimes fitted in the flow or the return pipe or a mechanical non-return valve is used for this purpose. Standby losses can be reduced even further by shutting down the boiler via the “boiler enable” terminals. A properly dimensioned low velocity header ensures that the natural flow through the boiler can be neglected.
5.3.4 Combustion air supply

The unit can optionally be supplied as a room sealed appliance. This simplifies the possibilities for installation within the building.

5.3.4.1 General

Guide lines and installation instructions

The flue gas discharge and the air supply systems must be installed by a recognised installer in accordance with the applicable national and local specifications and regulations.

The total resistance of the air supply and the flue should not result in a pressure drop exceeding 1.8 mbar (180 Pa).

If the unit is used as a room sealed appliance, open Tees or draught stabiliser are not permitted.

5.3.4.2 Air supply pipe

The air supply pipe may be single-walled and constructed of:
- plastic
- thin-walled aluminium
- flexible aluminium (take account of the resistance)
- stainless steel.

Fig. 5 horizontal air supply

<table>
<thead>
<tr>
<th>Type</th>
<th>Air supply diameter D1 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R301</td>
<td>100</td>
</tr>
<tr>
<td>R302</td>
<td>100</td>
</tr>
<tr>
<td>R303</td>
<td>100</td>
</tr>
<tr>
<td>R304</td>
<td>125</td>
</tr>
<tr>
<td>R305</td>
<td>150</td>
</tr>
<tr>
<td>R306</td>
<td>180</td>
</tr>
<tr>
<td>R307</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 4 Air supply connection
The connection to the air supply pipe is always mounted on the back of the unit.

Multiple units may not be connected to the same air supply or flue pipe.

To prevent snow entering, the air supply pipe must extend at least 300 mm above the roof and must be fitted with a rain cap.

The flue pipe opening must end at least 1000 mm above the roof, assuming the roof to be flat.

The relative horizontal difference between the flue pipe and the air supply pipe must not be less than the width of the unit.

To prevent undesirable condensate from forming, we strongly recommend that you insulate the air-supply duct on the outside to make it vapour tight.
5.3.5 The Flue system

5.3.5.1 General

The flue system must be installed by a recognised installer in accordance with the applicable national and local specifications and regulations. The flue pipe connection is at the back of the appliance and has been designed for direct connection to a corrosion resisting flue pipe.

When the boiler functions as a high capacity boiler, the high efficiency can lead to the formation of condensation in the chimney.

The condensate drain must never become blocked!

Direct connection to brick built stacks is not permitted because the combustion efficiency of the boiler is > 83 %.

The following table lists all the flue gas data for all types.

<table>
<thead>
<tr>
<th>Type</th>
<th>Flue gas temperature at full capacity (approx.)</th>
<th>Flue gas quantity at full capacity</th>
<th>Maximum permissible chimney resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R301</td>
<td>135 °C</td>
<td>130 m³/h</td>
<td>0.033 kg/s 1.8 mbar</td>
</tr>
<tr>
<td>R302</td>
<td>135 °C</td>
<td>161 m³/h</td>
<td>0.040 kg/s 1.8 mbar</td>
</tr>
<tr>
<td>R303</td>
<td>135 °C</td>
<td>214 m³/h</td>
<td>0.053 kg/s 1.8 mbar</td>
</tr>
<tr>
<td>R304</td>
<td>135 °C</td>
<td>261 m³/h</td>
<td>0.065 kg/s 1.8 mbar</td>
</tr>
<tr>
<td>R305</td>
<td>135 °C</td>
<td>345 m³/h</td>
<td>0.086 kg/s 1.8 mbar</td>
</tr>
<tr>
<td>R306</td>
<td>135 °C</td>
<td>430 m³/h</td>
<td>0.106 kg/s 1.8 mbar</td>
</tr>
<tr>
<td>R307</td>
<td>135 °C</td>
<td>513 m³/h</td>
<td>0.127 kg/s 1.8 mbar</td>
</tr>
</tbody>
</table>

Table 5 Flue gas data

Capacity 100 %
Flow temperature 80 °C
Return temperature 60 °C.

5.3.5.2 Chimney

Chimney length

Because the appliance is fitted with a “premix burner” with a fan, an over-pressure is built up in the unit. This overpressure is sufficient to overcome the resistance of the cooled burner, heat exchangers, air intake and chimney up to a maximum of 1.8 mbar external to the boiler.

The back-pressure outside the unit depends on:

a) The resistance of the flue pipe
b) The degree of cooling of the burner system
c) The resistance of the discharge system.
The degree of cooling of the flue gasses depends on:

a. the insulation value of the chimney
b. the local ambient temperature
c. the discharge system.

The flue connection diameters of the units have been chosen such that the speed of the flue gas will always be approximately 5 m/s. For the appliance there will be a maximum overpressure of approximately 1.8 mbar (180 Pa) for the flue system.

Owing to their high resistance, bends with an R/D ratio smaller than 1 should be avoided.

Calculation of the diameter and length

For calculating and checking the internal diameter of a flue system with mechanical discharge, refer to the applicable national and local regulations and specifications.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length of flue system in m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter 80 mm</td>
</tr>
<tr>
<td>R301</td>
<td>9</td>
</tr>
<tr>
<td>R302</td>
<td>38*</td>
</tr>
<tr>
<td>R303</td>
<td>8*</td>
</tr>
<tr>
<td>R304</td>
<td></td>
</tr>
<tr>
<td>R305</td>
<td></td>
</tr>
<tr>
<td>R306</td>
<td></td>
</tr>
<tr>
<td>R307</td>
<td></td>
</tr>
</tbody>
</table>

* Chimney diameter at the appliance.

These lengths are valid for boilers as open appliance. For room sealed appliances these lengths are valid for the air supply and flue together.

* Table 6: Length of flue system

The flue system lengths have been rounded down.
Losses in the chimney related to various chimney sections expressed in metres of straight pipe. The total loss must be subtracted from the maximum permitted chimney length given in table 6.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter in mm</th>
<th>Elbow 90° R/D = 0.5</th>
<th>Elbow 90° R/D = 1</th>
<th>Elbow 45° R/D = 0.5</th>
<th>90° Tee</th>
</tr>
</thead>
<tbody>
<tr>
<td>R301</td>
<td>80</td>
<td>4.0</td>
<td></td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>100*</td>
<td>4.9</td>
<td></td>
<td>1.4</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>3.2</td>
<td></td>
<td>1.6</td>
<td>6.2</td>
</tr>
<tr>
<td>R302</td>
<td>100*</td>
<td>4.9</td>
<td></td>
<td>1.4</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>3.2</td>
<td></td>
<td>1.6</td>
<td>6.2</td>
</tr>
<tr>
<td>R303</td>
<td>100*</td>
<td>4.9</td>
<td></td>
<td>1.4</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>3.2</td>
<td></td>
<td>1.6</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>1.8</td>
<td>7.5</td>
</tr>
<tr>
<td>R304</td>
<td>130</td>
<td>3.2</td>
<td></td>
<td>1.6</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>150*</td>
<td>3.2</td>
<td></td>
<td>1.8</td>
<td>7.5</td>
</tr>
<tr>
<td>R305</td>
<td>150</td>
<td>3.6</td>
<td></td>
<td>1.8</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>180*</td>
<td>4.6</td>
<td></td>
<td>2.3</td>
<td>9.0</td>
</tr>
<tr>
<td>R306</td>
<td>180</td>
<td>4.6</td>
<td></td>
<td>2.3</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>200*</td>
<td>4.8</td>
<td></td>
<td>2.6</td>
<td>10.1</td>
</tr>
<tr>
<td>R307</td>
<td>180</td>
<td>4.6</td>
<td></td>
<td>2.3</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>200*</td>
<td>4.8</td>
<td></td>
<td>2.6</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>6.2</td>
<td></td>
<td>3.1</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Table 7 Chimney losses in metres of straight pipe

* Connection at boiler.

5.3.6 Condensate discharge

Condensate that forms in the appliance must be discharged to a drain.

If there is no direct connection to a drain present, a water collection tank with a pump and a level switch may be used, so that the condensate can be pumped into a drain. The discharge of condensate into roof guttering is not permitted.

The appliance is fitted with a water trap which prevents flue gasses from entering the boiler room.

The connection to the drain must be arranged such that there is an open connection under the condensate discharge point on the appliance (see fig. 8). In addition, the discharge pipe must be fitted with a trap (U-bend) in accordance with the applicable regulations.

Ensure that the distance between the condensate discharge point of the boiler trap and the drainage pipe is at least 5 mm. This provides the required open connection and simplifies any subsequent maintenance activities and inspections.
5.4 Hydraulic system

5.4.1 General
Although it is not the intention to provide a complete handbook covering the most divergent hydraulic systems, the data is more extensive than would generally be provided in the case of conventional central heating boilers.

The R300 unit is a low water content boiler for which the water flow rates must be within minimum and maximum values.

Tables 8 + 10 list the required relationship between the three parameters Q (water flow), P (pressure) and t (temperature) at maximum capacity. Because of the high flow rate, the appliance is less sensitive to water hardness. Therefore, the water hardness may not exceed 250 ppm with a supply temperature of 80 °C (see 5.4.5 Water quality).

5.4.2 Water flow

5.4.2.1 Flow rate and resistance
The rate of water flow through the appliance must never fall below the required minimum (otherwise the water flow switch will be activated and the appliance will be shut down). The use of valves, non-return valves, systems in which several appliances are connected to a common transport system, etc., must not interfere with the required water circulation.
Table 8 Water flow rate and pump data R300

* The maximum power consumption of the pump is given for pump speed 3. The optimum operating point in relation to efficiency and minimum power consumption can be determined from the related pump curve.

** 3-phase pump available as an option.

The optional primary pump has been sized to have an optimum duty when $\Delta T = 22$ K. When running at ΔT’s less than this the pump size should be checked to ensure suitability.

The water flow rate can be adjusted with the aid of the built-in 3-speed pump control. The water flow rate can be measured by making a ΔP measurement via the filling and drainage valve in the supply and return pipe of the unit. The measured head can be compared with the boiler resistance (table 8). At full capacity the water flow rate can be very accurately compared with the ΔT, measured across the flow and return of the boiler.

The unit has a standard pump control. When the boiler is enabled, the pump is switched on. When the enable signal is removed, the pump will continue to run for several minutes. This run on time is adjustable. The standard time is two minutes.

When the system includes air heaters (ventilation, air treatment), it is usually desirable to have a small ΔT over these components. Because of this, the quantity of water flowing through the total secondary circuit is usually greater than that flowing through the boiler units.

The low velocity header must be dimensioned such that the water speed does not exceed 0.5 m/s.

In this case the diameter of the header must be calculated for the water volume flowing through the secondary circuit. When the water volume flowing through the secondary circuit is greater than that flowing through the primary circuit, a mixed temperature will exist which is lower than the desired temperature of the supply from the appliance. The regulation system reacts to this and opens the control devices (valves, etc.). Usually the supply temperature from the boiler(s) must be...
5.4. Pump characteristics

adjusted to obtain the desired temperature in the connected circuits.

Fig. 9 Pump characteristic UPS 25-80

Fig. 10 Pump characteristic UPS 32-80
5.4.2.3 Isolating valves

It is recommended that manual valves be fitted between the flow and return connections and the installation.
5.4.2.4 Valves Mechanical non-return valve can be used. This is required so as to avoid short-circuiting the appliance on the water side.

5.4.2.5 Water flow protection The unit is provided with water flow switch. This shuts the appliance down in the event that the flow of water through the appliance falls below the minimum required value.

5.4.3 Water pressure

5.4.3.1 Operating pressure At a maximum supply temperature of 90 °C and a minimum water flow rate such as occurs at a ΔT of 20 K, the minimum operating pressure must be greater than 1.5 bar. The operating pressure must be measured with the pump switched off. If a lower pressure is desired, the maximum supply temperature must be adjusted accordingly.

<table>
<thead>
<tr>
<th>Minimum operating pressure in bar</th>
<th>Flow temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1.5</td>
<td>90</td>
</tr>
<tr>
<td>>1</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 10 minimum operating pressures at nominal flow rate

5.4.3.2 Boiler expansion tank It is advisable to fit an expansion tank in the return pipe between pump and the boiler isolating valve.

5.4.3.3 System expansion tank The size of the expansion tank is determined by the quantity of water in the system. Our advice is to fit the system expansion tank at the neutral point (centrally) of the low velocity header.

5.4.3.4 Water pressure protection As an option, a 3 bar pressure relief valve can be supplied (separately). Pressure relief valves adjusted between 3 and 6 bar, with increments of 1 bar, can also be supplied if necessary.

5.4.4 Water temperature The maximum permissible temperature of the water flow can be set at 90 °C. If the high limit thermostat functions at 100 °C, the appliance shuts down and locks out and does not re-start automatically when the temperature falls below the high limit temperature setting.

5.4.5 Water quality The composition and quality of the system water has a direct influence on the performance of the whole system and the life of the appliance. Unsuitable addition and use of chemicals, water softeners, oxygen binders, de-aerators, aerators, and water filters all increase the possibility of faults.

Corrosive elements in certain additives can attack the system, resulting in leakage; deposits of undesirable sediments can lead to damage to the boiler heat exchanger.
For water hardness, a distinction must be made between:

a) Temporary hardness
 This is also referred to as carbonate hardness. Deposits are formed at higher temperatures and are easy to remove

b) Permanent hardness
 Minerals (for example, calcium sulphate) dissolved in the water can be deposited as a function of very high surface temperatures.

In general, water hardness is expressed in mg/litre (ppm) and is given the following divisions:

- Very soft: less than 50 ppm
- Soft: approx. 50 - 160 ppm
- Moderately hard: approx. 160 - 250 ppm
- Hard and very hard: over 250 ppm.

The system must contain soft to moderately hard water with a water hardness not exceeding 250 ppm with a supply temperature of 80 °C and ΔT = 20 K.

Before the water is topped up, the hardness and the chloride content of the water must be determined.

During the construction of larger installations, one of the appliances may be operational. New circuits may be regularly switched in, which must occur together with the addition of fresh water. In addition, it can happen that, because of leakage, some circuits must be disconnected, repaired and re-filled. In these circumstances the only appliance in operation often functions at full capacity and the chance of boiler scale formation is present. For this reason the make-up water must be softened. To ensure proper functioning of the appliance and the system, the use of water softeners is recommended.

Large stationary bubbles with widely different compositions can form at “dead points” in the system (in addition to oxygen and nitrogen, hydrogen and methane have also been detected). Oxygen promotes corrosion. Corrosion products, together with other pollutants, form a sludge deposit (magnetite) which causes pitting under the influence of oxygen.

The use of an air separator with an automatic de-aerator is strongly recommended. This should preferably be fitted in a horizontal section of the return pipe to the pump. If a vertical low velocity header is employed, the air separator should be fitted above the header.
The chloride concentration must not exceed 200 mg/l. If this level is exceeded, the cause must be located. Compare the chloride concentration of the additional water with that of the system water. If this concentration is higher, this indicates evaporation if no chloride containing materials have been added. If chloride is present in high concentrations the water will be more aggressive (due to, among other things, incorrectly regeneration of the water softener). The system must then be flushed out and re-filled with low chloride content water.

To reduce the effects of unnecessary wear and blockages resulting from any pollution present we advise the use of a filter system with a mesh opening of 100 microns. Always fit this in the return pipe of the secondary part of the system.

In order to guarantee a well functioning system and a long life, any suspended and corrosion producing particles must be removed with the aid of a well chosen and fitted filter system. The analysis of system water and the cleaning of filters must form part of the periodic inspection procedure.

If there is an intention to add chemicals (such as inhibitors) to the water, contact must be made with the supplier. The supplier can provide advice on filter systems and other requirements.

5.4.6 Examples of hydraulic systems

The hydraulic systems shown are only examples. They must not be employed in practice without professional analysis.

Low velocity header

The low velocity header must be dimensioned such that at full capacity the pressure difference between the supply to the flow and the return collector does not exceed 50 mmwg (approximately 0.5 m/s). The diameter of the low velocity header can be determined using the formula:

\[
\varnothing = \sqrt{\frac{Q}{3600} \times 1.28} \div v
\]

Where:
- \(\varnothing \) = the diameter of the low velocity header in m
- \(Q \) = the water flow rate in m³/h of the boiler circuit or the secondary circuit, whichever is the greater
- \(v \) = the speed in m/s.
Example of a low velocity header with isolating valves and an expansion tank.

![Diagram](image)

Fig. 12 Installation with a low velocity header, isolating valves and expansion tank

Mounting the low velocity header vertically has additional advantages: the upper section functions as an air separator and the lower section serves as a dirt separator. When air heaters (for ventilation or air treatment) are included in the system it is generally desirable to have a small ΔT over the air heaters. Because of this, the water flow rate through the whole secondary circuit is usually greater than that through the boilers. The low velocity header must be so dimensioned that the water speed does not exceed 0.5 m/s. In this case the diameter of the low velocity header must be calculated on the basis of the water flow through the secondary circuit. Because the volume of the water in the secondary system is greater than that in the primary circuit (boiler), there will be a water circulation in the opposite direction to that of the primary circulation through the low velocity header. A mixed temperature will then exist which is lower than the supply temperature from the boiler. The regulation system will react to this and will open the regulator functions (valves, etc.) in the system. Generally, the temperature of the water supply from the boiler(s) will need to be corrected to obtain the desired temperature in the connected circuits.

Systems with a separate flow header and a return header
Flow headers in combination with return headers are often used in renovation projects. Several circuits operate with mixing valves or diverting valves. In both cases a low velocity header or a bypass is necessary.
Installations with weather dependent regulation and hot water priority switching

The small water capacity of the boiler and the fast, accurate boiler temperature regulation make the R300 unit ideal for use as a boiler with hot water priority switching.

The boiler uses a simple temperature regulator without room-temperature compensation. In order to determine the supply water temperature and to compare this with the set heating curve using an external temperature sensor, it is necessary to keep the boiler pump operating continuously.

Switching the secondary pumps on and off without the use of a building optimising system results in the temperature swings being too large and a boiler and pump that are switched too frequently. This increases the chances of wear and faults occurring. In addition, it is likely that the operating efficiency will be reduced.

Generally the hot water storage capacity is determined by peak usage and operating cycle. In order to avoid shuttling between central heating and hot water regulation and to keep the boiler operating at high capacity, we advise the following:
- Minimum hot water storage capacity: 300 l/100 kW
- Maximum storage tank heating time: 20 minutes.
Installations with multiple appliances
For installations in which each appliance is fitted with a pump, the pump is switched off after the boiler has been shut down.

Hydraulic short-circuit
In order to avoid a short circuit over a non-operating appliance, we advise the use of non-return valves. These may be either mechanically or electrically operated valves.

When two appliances are switched in cascade, it is advisable to employ this system. When appliances are controlled by a building optimising system using weather compensation or a compensating unit, the common flow temperature sensor (TT) must be mounted at the common flow pipe as indicated in the drawing.
OPERATING INSTRUCTIONS

6.1 Function
When a heating demand is received and before the boiler starts up, the appliance must be pre-purged. The fan supplies combustion air and has a modulating control. A proportional controller in the gas valve (also modulating) determines the required quantity of gas. Gas and air are optimally mixed in the mixing chamber. Thereafter, the gas air mixture is ignited on the main burner. The fan also ensures that the resulting flue gasses are subsequently removed. The removal system for these gasses performs an essential function for the proper operation of the appliance. The unit has no limits for return water temperature. If this temperature is low, condensation will be formed which will then be removed via the drainage system.

6.2 Regulation
Depending on the heating demand, the unit will be started up and shut down between 0% and 25% capacity and will be continuously modulated between 25% and 100% capacity.

6.3 Control module

* Fig. 16 Control module

1 function
 0 standby
 1 automatic operation
 2 summer operation
 III service operation min.
 II service operation max.

2 function selector

3 fault indication △

4 supply temperature

5 malfunction code (flashing)

1 parameter indication
 P1 current/setting boiler supply temp.
 P2 current/setting domestic hot water temperature
 *P3 desired temperature
 P5 current external temperature
 P8 current low velocity header temp.
 P9 current boiler capacity
 P10 password entry for factory settings

2 optical I/O

3 reset/programming push-button

4 alarm LED

5 parameter/value selector

6 output status

7 current/desired parameter value

8 fault/parameter indication

9 input status

* P3 set load (in combination with KKM)
Operating mode (cover closed)
With the cover closed and by using the rotational switch (pos. No. 2) clockwise or anti-clockwise the boilers’ operating mode can be set.

The operating modes are:-
- **Ø** standby: the boiler switched off but frost protection is active
- **Ø** automatic: the boiler can operate in heating or direct hot water mode
- **~** summer mode: the boiler will only react to a direct hot water demand
- **Â I** service, low capacity: the boiler will run at low capacity
- **Â II** service, high capacity: the boiler will run at full capacity.

Information mode
With the cover open and by turning the rotational switch (Pos. No 5) clockwise or anti-clockwise it is possible to read out certain information from the boiler management unit.

There are 10 possibilities. An arrow at the bottom of the LCD display will indicate which parameter has been selected. The following parameters are readable:-

Parameter
- **P1** actual/setting flow temperature
- **P2** actual/setting direct hot water temperature (if used)
- **P3** setpoint temperature (*P3 set load in comb. with KKM)
- **P5** actual outside temperature (if used)
- **P8** temperature at the low velocity header (if used)
- **P9** actual boiler capacity
- **P10** only for trained service engineers.

Summary of input and output indications (cover open)

Input indications: -
- ** הכנסת** Flame Ionisation detected
- **SW** Water flow switch in operating position
- **DW** APS in operating position
- **RT** Boiler enabled by BMS
- **Bus** Data-bus detected.

Output indications: -
- **دخول** Power to Main Gas Valve
- **פעלה** Power to Ignitor
- ** wholesalers** Control signal to fan
- **ḍ** Power to Primary Boiler Pump
- **촉** Power to Primary DHW Pump.
Setting the flow temperature for Central Heating (cover open)

Only applicable to boilers **without** weather compensated flow temperature or a 0 - 10 Volt control signal.

N.B. Only applicable if outside temperature compensation or a 0 - 10 V signal is not used.

- Open the lid (the arrow at the bottom of the LCD display indicates parameter P1)
- Push the Reset/Programming key (pos.3), the LED will light, turn the rotary switch (pos.5) until the desired water flow temperature has been reached
- Push the Reset/Programming key, the LED will go out
- Close the cover.

Setting the flow temperature for Domestic Hot Water (cover open)

N.B. Only applicable if the Direct Hot Water function is used with the BM-E expansion module.

- Open the lid
- Turn the rotational switch (pos.5) clockwise until the arrow at the bottom of the LCD display indicates parameter P2
- Push the Reset/LCD display key (pos.3), the LED will light, turn the rotary switch until the desired Domestic Hot Water flow temperature has been reached
- Push the Reset/Programming key, the LED will go out
- Close the cover.
6.4 Fault indications

A fault always results in a flashing symbol and a fault code appearing in the display. When a fault occurs, the cause must always be found and corrected before the related protective function is reset. If a fault has occurred 3 times or more within 6 minutes, the fault code will appear in the display with a "3" above it. If the supplementary fault code "3" is present for 6 minutes or if a deactivating fault is detected for more than 6 minutes, a fault signal (terminals 12 - 13) will follow. The boiler can be nevertheless in operation.

1 The high limit thermostat has operated. The boiler temperature has exceeded 100 °C. Press the reset button.
2/3 The interlocking input has been interrupted. Correct the external error and press reset.
4 Flame signal fault. No flame detected at burner start. One restart possible. Correct fault and press reset.
5 Flames go out during operation. If this fault occurs 3 times within 6 minutes, the fault will be lock out. Correct the fault and press reset.
6 Temperature protection has operated. The boiler temp. has exceeded the setting. Press reset.
7 The lockout input has been interrupted. Correct the external fault and press reset.
11 Error in flame signal. A flame has been detected during start-up. Correct the fault and press reset.
12 Flow temperature sensor is faulty. Correct fault.
13 Wiring of the CXE/EM extension module is defective. Correct fault.
14 Hot water temp. sensor is defective. Correct fault.
15 External temp. sensor is defective. Correct fault.
18 Header temp. sensor is defective. Correct fault.
20 Error in the control of gas valve 1. After burner has stopped a flame has been detected for a period of 5 seconds. This in spite of the fact that valve has been sent a close signal. Correct fault.
21 Error in the control of gas valve 2. After burner has stopped a flame has been detected for a period of 5 seconds. This in spite of the fact that valve has been sent a close signal. Correct fault.
22 Air flow too low. The air pressure switch has not operated. Press reset.
23 The air pressure switch has not switched off. Press reset.
24 The fan does not reach the set speed during pre-ventilating. Correct fault.
25 The fan does not reach the set speed during ignition. Correct fault.
26 The fan does not come to a standstill. Correct fault.
27 The air pressure switch switched off during operation.
30 CRC error in EEprom data group “Boiler”. Press reset.
6.5 Start-up
1. Open the gas valve
2. Switch on the appliance using the on/off switch on the control panel
3. Select the function “automatic operation” using the function selector (see also the operating instructions on the boiler).

6.6 Shut-down
The unit can be shut down in three different ways:
A. The boiler continues to supply domestic hot water. Select the function with the function switch
B. The boiler is not operating and will only start up for automatic frost protection. Select the function using the function selector
C. Shut down the boiler:
 1. Switch off the boiler using the on/off switch on the control panel
 2. Close the gas valve.

6.7 Warnings
The unit must be installed by a recognised installer. The operating instructions must be strictly observed.

If the source of the fault cannot be found, the service organisation must be contacted. Never repair the appliance yourself.

The condensate drain may never be modified or closed off. When a boiler is completely shut down in the winter period, there is a danger of freezing. Drain the water out with the aid of the filling/drainage valve. The user must never make any modifications to the appliance or the discharge system.

Annual checking and good maintenance are necessary in order to guarantee optimum performance.
7 COMMISSIONING

7.1 General Commissioning must be carried out by skilled personnel. Failure to observe this condition will invalidate the guarantee.

7.2 Commissioning Water and the hydraulic system

Take a sample of the water from the filling/drainage valve on the boiler and a sample of the make-up water. Determine the water hardness using the titration method. The water hardness must be less than 250 ppm. If the measured hardness is too high, the water must be softened.

Determine the concentration of chloride in the system water. This may never exceed 200 mg/l. If this concentration is exceeded, the system must be flushed through and re-filled with low chloride water.

Check the pressure of the system water. This must have at least the minimum value given in table 10 (Operating pressures).

Check that there is a by-pass or a low velocity header fitted in the hydraulic system. This is a requirement.

Check and bleed the pump

Switch on the power supply to the boiler at the on/off switch and check the direction of rotation of the boiler pump after removing the end cap from the pump motor housing.

Before the appliance is started up, any air present must be bled out of the pump by removing the end cap from the pump motor housing. This must be repeated after the appliance has been in operation for a short time.

Check the chimney

Check the chimney. Ensure that the connection between the appliance and the chimney is such that gasses cannot escape. If necessary, apply an appropriate sealing tape.

Bleed the gas pipework

Open the gas valve. Check that the gas piping is gas-tight. Remove any air between the gas valve and the appliance.
Check the operation of the appliance at full capacity
Start up the appliance. Allow the appliance to operate at full capacity and to stabilise (approximately 3 minutes). At full capacity, the following settings must be checked and corrected if necessary.

Settings at full capacity
Guide value CO₂ 9,8 - 10,2 % for natural gas G20, G25
11,6 - 12,0 % for propane G31

Guide value CO <15 ppm for natural gas G20, G25
<25 ppm for propane G31

Burner pressure = fan pressure – pressure above burner
P(vent)-P(bb)
type R301 - R302 1,5 ± 0,5 mbar
type R303 - R307 8,0 ± 2,0 mbar

Measure the dynamic gas pressure at the supply side of the gas valve. This must be at least 17 mbar for natural gas (30 mbar for propane or butane) with the boiler operating at full capacity. When multiple appliances are installed in the boiler room, this pressure must be measured with all the appliances operating at full capacity.

Check the temperature difference (ΔT) between the flow and return to the appliance at the water side. ΔT must be between 15 and 25 K at full capacity.
Check the appliance at minimum capacity
Adjust the appliance to operate at minimum capacity. At minimum capacity the following settings must be checked and corrected if necessary:

Settings at minimum capacity
Guide value CO₂
9,0 - 9,4 % for natural gas G20, G25
10,8 - 11,2 % for propane G31

Guide value CO
<15 ppm for natural gas G20, G25
<25 ppm for propane G31

Setting air pressure switch
 - type 3 - 7
 0,5 ± 0,05 mbar

Burner pressure = fan pressure – pressure above burner P(vent)-P(bb)
 - type 1 - 2
 0,1 ± 0,05 mbar
 - type 3 - 7
 0,7 ± 0,2 mbar

Adjusting the gas valve R301 - R302
An adjusting screw is located at the rear of the boiler which can be used to adjust the gas volume (CO₂ value). Run the boiler at full load and check the CO₂ value. Adjust if necessary using the adjusting screw.

Adjusting the gas valve R303 - R307
If the CO₂ values at minimum and/or full load appear to be incorrect, you can adjust these using the V and N adjusting screws on the gas valve.
Procedure: Run the boiler at full load (100%) and check the CO₂ value. Adjust, if necessary, using the V adjusting screw. Then, run the boiler at minimum load and check the CO₂ value again. Adjust, if necessary, using the N adjusting screw.

Adjusting the air-pressure switch R301 and R302
In this example, the air-pressure switch is set at 80 % of the fan speed when pre-ventilating.
Pre-ventilating takes place at 80 % of the max. speed (P9). The air-pressure switch is set to 0.8 x 80 = 64 turn/min. The actual switching moment can be read on the display.

Checking the air-pressure switch R303 - R307
Check the function ΔPₘᵢₙ pressure switch by carefully placing a board (for example, a piece of strong cardboard) in front of the supply opening to the fan and slowly slide the board so as to close off the opening until the boiler shuts down.
If the appliance is checked in the manner indicated, and corrected as necessary, the following pressures, at full capacity, must be recorded for reference on the commissioning report note:

- P_{vent}
- P_{bb}
- $P_{\text{vent}} - P_{bb}$ (measure separately!)
- P_{vh}
- ΔT.
8 MAINTENANCE

8.1 Safety During maintenance activities, always wear suitable clothing and shoes. Consider your own safety, particularly in respect of jewellery and loose clothing.

8.2 General In order to ensure continued good and safe operation of the appliance, this must be inspected at least once per year.

The following activities must be carried out (for an extensive description of these activities, see 8.3):
- Renew the ignition and ionisation electrodes
- Clean the air inlet damper (option)
- Clean the fan blades
- Clean the condensate receptacle
- Clean the condensate trap and the drainage pipe from the appliance
- Inspect all pressure measurement pipes and nipples
- After removing the panels from the left hand side of the appliance, ignition and burning can be observed via a sight glass
- Test the unit at the flue gas side for CO₂ and CO and correct these at both full and minimum capacity if necessary
- Check all the safety functions, and make any necessary adjustments
- Measure the water temperature difference ΔT as a measure of the flow rate
- Check the water pressure
- Check the water quality: hardness and chloride content
- Record all data
- Clean the outside of all the panels and ensure that these all have a smart appearance.

8.3 Procedure a) Disconnect the power supply
b) Close the gas supply valve

- The ignition and ionisation electrodes are fitted at the rear of the appliance
- Remove the spark plug caps from the ignition and ionisation electrodes and inspect them for possible damage, such as indications of burning or pollution (renew the spark plug caps if damaged).
In order to carry out the following activities, the panels must first be removed.
- In order to clean the air inlet damper this must first be removed. Clean it with a vacuum cleaner.
- For appliances installed in a dusty environment, the fan blades may become dirty. This will result in the air supply being reduced and the fan becoming unbalanced. Clean the fan blades with a brush. All loose dirt can be removed in this way.
- A trap is fitted under the condensate plate. Unscrew the trap and clean it.
- Inspect all the pressure measurement pipes. Ensure that these are securely fastened and tighten the connection nuts if necessary.
- Inspect the screws in the measuring nipples; renew the measuring nipples if they have become damaged.
- In order to measure gas and air pressures and to perform measurements at the flue gas side, calibrated test equipment must be employed.
- All test data must be recorded on the applicable test forms.

8.4 Cleaning the burner and heat exchangers

The burner and the heat exchangers can be cleaned internally with suitable media. For advice concerning suitable media, consult the service department of your supplier.

8.5 Cleaning the filter/screen in the gas combination block

In order to clean the filter/screen in the gas combination block, this must first be removed.

8.6 Ionisation measurement

In order to carry out an ionisation measurement, a microammeter with a measuring range of 0 - 200 µA DC must be connected in the ionisation circuit. In this way the ionisation protection function can be checked. The nominal ionisation current is between 10 and 25 µA. The minimum ionisation current is 2.8 µA.

8.7 Service

For service and maintenance the service department of your supplier is always available.

STOKVIS ENERGY SYSTEMS
96 R WALTON ROAD, EAST MOLESEY
SURREY KT8 0DL
Tel.: 08707 707 747
Fax: 08707 707 767
9

CONVERSION FORMULAE AND FACTORS

Formulae

\[\text{CO}_2 = \frac{20,9 - \text{measured O}_2}{20,9} \times 11,7 \]

\[\text{O}_2 = 20,9 - \frac{\text{measured CO}_2 \times 20,9}{11,7} \]

11,7 % \ CO_2 is the maximum \ CO_2 percentage that is generated by stoichiometric burning of G20 natural gas (H-gas).

Excess air N:

\[N = \frac{20,9}{20,9 - \text{measured O}_2} \times 0,914 \quad \text{or} \]

\[N = 1 + \left(\frac{11,7}{\text{CO}_2 \text{measured}} - 1 \right) \times 0,914 \]

Conversion factors

For \ NO_x (N=1):

\[1 \ ppm = 2,05 \text{ mg/m}^3 = 1,759 \text{ mg/kWh} = 0,498 \text{ mg/MJ} \]

For \ CO (N=1):

\[1 \ ppm = 1,24 \text{ mg/m}^3 = 1,064 \text{ mg/kWh} = 0,298 \text{ mg/MJ} \]

Example:

Measured values for an environmentally friendly unit:

\(\text{NO}_x = 15 \ ppm \)

\(\text{CO}_2 = 10 \% \)

What is the value for \ NO_x according to the most usual standard in mg/kWh for N=1?

\[\text{O}_2 = 20,9 - \frac{10 \times 20,9}{11,7} = 3 \% \]

\[N = \frac{20,9}{20,9 - 3} = 1,17 \]

\(\text{NO}_x \) (for \(N = 1 \)) =

\[15,0 \times 1,17 = 17,6 \text{ ppm} \]

\[17,6 \times 1,759 = 30,9 \text{ mg/kWh} \]
η\textsubscript{b} = 90 - \left(\frac{0.339}{\text{CO}_2} + 0.008 \right) \times \Delta T

\eta\textsubscript{o} = 100 - \left(\frac{0.377}{\text{CO}_2} + 0.009 \right) \times \Delta T

\text{For condensing boilers:}
As a result of condensation, the efficiency at the lower value increases.

\eta\textsubscript{b} = 90 - \left(\frac{0.339}{\text{CO}_2} + 0.008 \right) \times \Delta T + A \left(7.5 + 0.006 \Delta T \right)

\eta\textsubscript{o}/\eta\textsubscript{b}=1,11

\Delta T = \text{Difference in temperature between the flue gasses and the environmental temperature}
\eta\textsubscript{b} = \text{Fuel efficiency at the upper calorific value}
\eta\textsubscript{o} = \text{Fuel efficiency at the lower calorific value}
\text{CO}_2 = \text{The volume of CO}_2 \text{ in the flue gas (%)}
\text{O}_2 = \text{The volume of O}_2 \text{ in the flue gas (%)}
A = \text{The quantity of condensed water in the appliance per m}^3 \text{ gas in kg (kg/m}^3\text{gas)}.
Table 12 Conversion of degrees of hardness

<table>
<thead>
<tr>
<th></th>
<th>meg/l</th>
<th>°dH</th>
<th>°f</th>
<th>°e</th>
<th>mg CaCO₃/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>meg/l</td>
<td>1</td>
<td>2.8</td>
<td>5</td>
<td>3.51</td>
<td>50</td>
</tr>
<tr>
<td>°dH</td>
<td>0.37</td>
<td>1</td>
<td>1.78</td>
<td>1.25</td>
<td>17.8</td>
</tr>
<tr>
<td>°f</td>
<td>0.2</td>
<td>0.56</td>
<td>1</td>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>°e</td>
<td>0.285</td>
<td>0.8</td>
<td>1.43</td>
<td>1</td>
<td>14.3</td>
</tr>
<tr>
<td>mg CaCO₃/l</td>
<td>0.02</td>
<td>0.056</td>
<td>0.1</td>
<td>1.54</td>
<td>1</td>
</tr>
</tbody>
</table>

1 degree English hardness (°e) = 65 mg CaCO₃/imp. gallon
1 Grain/US Gallon = 0.958 °dH
1 milligramme equivalent per l (mval/l) = 2.8 °dH
1 ppm (parts per million) CaCO₃ = 1 mg CaCO₃/l

For information:
The public water supply in general has a pH value of approximately 7 - 8. The temporary hardness will be 60 to 80% of the total hardness, which can vary considerably from one place to another.